Tropical rainfall patterns

Andy Soos, ENN One often ignored consequence of global climate change is that the Northern Hemisphere is becoming warmer than the Southern Hemisphere, which could significantly alter tropical precipitation patterns, according to a new study by climatologists from the University of California, Berkeley, and the University of Washington. What this means, over time, is that rain that falls in one place may shift to another place. What is desert now may become green while other lands languish.Such a shift could increase or decrease seasonal rainfall in areas such as the Amazon, sub-Saharan Africa or East Asia, leaving some areas wetter and some drier than today.
“A key finding is a tendency to shift tropical rainfall northward, which could mean increases in monsoon weather systems in Asia or shifts of the wet season from south to north in Africa and South America,” said UC Berkeley graduate student Andrew R. Friedman, who led the analysis.
“Tropical rainfall likes the warmer hemisphere,” summed up John Chiang, UC Berkeley associate professor of geography and a member of the Berkeley Atmospheric Sciences Center. “As a result, tropical rainfall cares a lot about the temperature difference between the two hemispheres.”
Chiang and Friedman, along with University of Washington colleagues Dargan M. W. Frierson and graduate student Yen-Ting Hwang, report their findings in a paper now accepted by the Journal of Climate, a publication of the American Meteorological Society.
Generally, rainfall patterns fall into bands at specific latitudes, such as the Intertropical Convergence Zone. The researchers say that a warmer northern hemisphere causes atmospheric overturning to weaken in the north and strengthen in the south, shifting rain bands northward.
The Intertropical Convergence Zone (ITCZ), known by sailors as the doldrums, is the area encircling the earth near the equator where the northeast and southeast trade winds come together.
(Source: Environmental News Network)

Leave a Reply